3GEORGIA SOUTHERN

UNIVERSITY

MATLAB Marina: Iteration, while loops advanced

Student Learning Objectives
After completing this module, one should:
1. Be able solve problems using while loops.

Terms
NA

MATLAB Functions, Keywords, and Operators
break, continue, flag

Approximating an Infinite Series
The Taylor series of a real valued (or complex valued) function that is infinitely differentiable at
avalueais

=3 L0 gy

= k!

k=0

Where f(a) is the kth derivative of f(x) with respect to x evaluated at x = a and k! is the is the
factorial of k. The Taylor series for the function f(x)=e" ata=0is

2 3 4
X X X

. x o0 xk
ef=l+—+—+—+—+-=> —
I 20 3t 41 o k!

The infinite Taylor series can be approximated by using the nth Taylor polynomial P, (x) where

p(y-30@

x (x—a)k . For example, for n = 5 (6 terms including k = 0), the approximation
k=0 .

3 4 5
is e* zf;(x):]+£+x_+x_+x_+x_.
I 2! 31 41 5!

The value for n can be chosen as a set number of terms or based on an error bound, often how
the small the terms being added to the sum have become. If the series is to be approximated
using a set number of terms, array operations or a for loop can be used to determine the
approximation. If, however, the series will be approximated using an error bound then a while
loop will need to be used since the number of terms needed to meet the error bound is not
known.

The program of Figure 1 approximates the function f(x) =¢" using an error bound

corresponding to the magnitude of the term. If the term magnitude for the n+1 termis
sufficiency small, the approximation is complete using Pn(x) as the approximation.



% Maclaurin series for e”x (Taylor series about a = 0)
% term magnitude to stop approximation at
epsilon = 0.01;

b

% term for n = 0

P =20.0;

n = 0;

Pn = x*n/factorial (n);

% add term to result and compute terms until desired accuracy
met

while (abs (Pn) >= epsilon)

add term to result

o\°

P =P + Pn;

% compute next term in series
n=n+ 1;

Pn = x*n/factorial (n);

end

fprintf ("Approximation of e”x for x = %0.1f is %0.2f.\n',x, P);

Figure 1. Program to Determine Approximation of f(x) = e*

The initial approximation is set to zero and the n = 0 term is determined. The magnitude for the
term for n = 0 is compared to the error bound (0.01 here). If the term is larger than the error
bound, then the following two operations are repeated until the term for a value of n is less
than the error bound:

e New approximation is the old approximation plus the term (running sum of terms)

e nisincremented and the new term for n is determined

When the term’s magnitude for a particular n is less than the error bound, the approximation is
complete and uses the terms from 0 to n-1.

Loop break and continue

The break and continue statements give a programmer additional flexibility with loop control
statements. The break statement ends the loop containing it and sends control to the next
statement after the loop. For a nested loop, break causes the exit from the innermost loop. The
continue command ends the current iteration of the loop sending control to the end of the loop
body, i.e. skips the rest of the statements in the loop body and starts the next iteration. Break
and continue are usually used as part of a conditional statement (if) nested within the loop. The
break and continue statements can only be used with for and while loops.

Programs can usually be written without using break and continue statements and one should
avoid using break and continue statements unless it makes the program easier to read. Using
conditional structures to avoid performing operations or ensuring the logical expression of a
while loop handles all the cases of terminating the loop is generally preferable to using break
and continue.



The programs of Figures 2 and 3 illustrate the use of break and continue. The program of Figure
2 uses a beak statement to exit the loop if a data value was identified as not valid. A for loop
with a loop control array of 1:1:length(data) could be used in place of the while loop. The break
statement in the program of Figure 2 could be eliminated if the test of dataGood was added to
the loop control expression, k <= length(data) && dataGood.

data = [o04, 36, 98, 23, 66, 61, NaN, 15, 39, 43];
dataGood = true;
k =1;

while (k <= length (data))
if isnan(data(k))
dataGood = false;
break;
end
k =k + 1;
end

if (dataGood)

fprintf ('Data is all valid\n');
else

fprintf ('Data element %d is not wvalid.\n',6k);
end

Figure 2. Program Determining if all Data in Array is Valid

The program of Figure 3 sums the elements of the array data and omits any non-valid data
(NaN, inf, -inf) from the sum. The while loop of Figure 4 performs the same operation but
avoids the use of the continue statement and so is generally considered preferable.

[e)

% sum only numeric data

data = [64, 36, inf, 23, 66, 61, NaN, 15, 39, 43];
sumbData = 0;
k = 0;
while (k < length(data))
k =k + 1;

if (~isfinite(data(k)))
continue;
end

sumData = sumbData + data (k) ;
end

Figure 3. Program to Sum all Valid Data



while (k < length(data))

k =k + 1;
if (isfinite(data(k)))

sumData = sumData + data (k);
end

end

Figure 4. While Loop Segment to Sum all Valid Data

Radioactive Decay

The program of Figure 5 uses a flag controlled while loop to determine when a radioactive
material has decayed to a safe level. The initial level is No and the safe level is Nsafe. Radiactive
decay can be described by the recursive equation Nk = Nk-1(1-A) where X is the decay rate, Nis
the concentration at step k, and Ni.1 is the concentration at the previous step k-1. The decay
rate is a value between 0 and 1, the closer to 1 the faster the decay rate.

[e)

% initial and safe levels
NO = 100;
Nsafe = 5;

% decay constant
lambda = 0.4;

k = 0;
N = NO;
safe = false;
while (~safe)
new level at decay step k
=k + 1;
= (l-lambda) *N;
if (N < Nsafe)
safe = true;

Z ~ o°

end
end

fprintf ('It took %d steps to reach safe concentration.\n',k);

Figure 5. Program to Determine when Radioactive Material Decays to Safe Level

The flag safe is initially set to false. The loop control expression is true as long as the flag is
false. Each iteration of the loop corresponds to a decay step. In the loop body, the level for the
next decay step is determined and the new level is compared to the safe level. If the new level
is safe, the flag is set to true and the loop will be exited when the loop control expressions is
evaluated next.

Last modified Wednesday, March 30, 2022



MATLAB Marina is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.



http://www.matlabmarina.com/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

	MATLAB Marina: Iteration, while loops advanced
	Student Learning Objectives
	Terms
	MATLAB Functions, Keywords, and Operators
	Approximating an Infinite Series
	Loop break and continue
	Radioactive Decay


